小知识:理解 ARM64 内核中对 52 位虚拟地址的支持

%小知识:理解 ARM64 内核中对 52 位虚拟地址的支持-猿站网-插图

随着 64 位硬件的引入,增加了处理更大地址空间的需求。

当 64 位硬件变得可用之后,处理更大地址空间(大于 232 字节)的需求变得显而易见。现如今一些公司已经提供 64TiB 或更大内存的服务器,x86_64 架构和 arm64 架构现在允许寻址的地址空间大于 248 字节(可以使用默认的 48 位地址支持)。

x86_64 架构通过让硬件和软件启用五级页表以支持这些用例。它允许寻址的地址空间等于 257 字节(详情见 x86:在 4.12 内核中启用 5 级页表)。它突破了过去虚拟地址空间 128PiB 和物理地址空间 4PiB 的上限。

arm64 架构通过引入两个新的体系结构 —— ARMv8.2 LVA(更大的虚拟寻址) 和 ARMv8.2 LPA(更大的物理地址寻址) —— 拓展来实现相同的功能。这允许使用 4PiB 的虚拟地址空间和 4PiB 的物理地址空间(即分别为 252 位)。

随着新的 arm64 CPU 中支持了 ARMv8.2 体系结构拓展,同时现在开源软件也支持了这两种新的硬件拓展。

Linux 5.4 内核开始, arm64 架构中的 52 位(大)虚拟地址(VA)和物理地址(PA)得到支持。尽管内核文档描述了这些特性和新的内核运行时对旧的 CPU(硬件层面不支持 52 位虚拟地址拓展)和新的 CPU(硬件层面支持 52 位虚拟地址拓展)的影响,但对普通用户而言,理解这些并且如何 “选择使用” 52 位的地址空间可能会很复杂。

因此,我会在本文中介绍下面这些比较新的概念:

在增加了对这些功能的支持后,内核的内存布局如何“翻转”到 Arm64 架构 对用户态应用的影响,尤其是对提供调试支持的程序(例如:kexec-tools、 makedumpfile 和 crash-utility) 如何通过指定大于 48 位的 mmap 参数,使用户态应用“选择”从 52 位地址空间接受 VA?

ARMv8.2 架构的 LVA 和 LPA 拓展

ARMv8.2 架构提供两种重要的拓展:大虚拟寻址(LVA)和大物理寻址(LPA)。

当使用 64 KB 转换粒度时,ARMv8.2-LVA 为每个翻译表基地址寄存器提供了一个更大的 52 位虚拟地址空间。

在 ARMv8.2-LVA 中允许:

当使用 64 KB 转换粒度时,中间物理地址(IPA)和物理地址空间拓展为 52 位。 如果使用 64 KB 转换粒度来实现对 52 位物理地址的支持,那么一级块将会覆盖 4TB 的地址空间。

需要注意的是这些特性仅在 AArch64 架构中支持。

目前下列的 Arm64 Cortex-A 处理器支持 ARMv8.2 拓展:

Cortex-A55 Cortex-A75 Cortex-A76

更多细节请参考 Armv8 架构参考手册。

Arm64 的内核内存布局

伴随着 ARMv8.2 拓展增加了对 LVA 地址的支持(仅当以页大小为 64 KB 运行时可用),在第一级转换中,描述符的数量会增加。

用户地址将 63-48 位位置为 0,然而内核地址将这些位设置为 1。TTBRx 的选择由虚拟地址的 63 位决定。swapper_pg_dir 仅包含内核(全局)映射,然而 pgd 仅包含用户(非全局)的映射。swapper_pg_dir 地址会写入 TTBR1,且永远不会写入 TTBR0。

页面大小为 64 KB 和三个级别的(具有 52 位硬件支持)的 AArch64 架构下 Linux 内存布局如下:

开始结束大小用途

———————————————————————–

0000000000000000000fffffffffffff4PB用户

  fff0000000000000      fff7ffffffffffff           2PB内核逻辑内存映射

  fff8000000000000      fffd9fffffffffff        1440TB[间隙]

  fffda00000000000      ffff9fffffffffff         512TBKasan阴影区

  ffffa00000000000      ffffa00007ffffff         128MB          bpf jit 区域

  ffffa00008000000      ffffa0000fffffff         128MB模块

  ffffa00010000000      fffff81ffffeffff         ~88TB          vmalloc

  fffff81fffff0000      fffffc1ffe58ffff          ~3TB[保护区域]

  fffffc1ffe590000      fffffc1ffe9fffff        4544KB固定映射

  fffffc1ffea00000      fffffc1ffebfffff           2MB[保护区域]

fffffc1ffec00000 fffffc1fffbfffff 16MB PCI I/O 空间

  fffffc1fffc00000      fffffc1fffdfffff           2MB[保护区域]

  fffffc1fffe00000      ffffffffffdfffff        3968GB          vmemmap

  ffffffffffe00000      ffffffffffffffff           2MB[保护区域]

4 KB 页面的转换查询表如下:

+——–+——–+——–+——–+——–+——–+——–+——–+

|6356|5548|4740|3932|3124|2316|158|70|

+——–+——–+——–+——–+——–+——–+——–+——–+

||||||

|||||         v

|||||[11:0]页内偏移量

||||+->[20:12] L3 索引

|||+———–>[29:21] L2 索引

||+———————>[38:30] L1 索引

|+——————————->[47:39] L0 索引

+————————————————->[63] TTBR0/1

64 KB 页面的转换查询表如下:

+——–+——–+——–+——–+——–+——–+——–+——–+

|6356|5548|4740|3932|3124|2316|158|70|

+——–+——–+——–+——–+——–+——–+——–+——–+

|||||

||||              v

||||[15:0]页内偏移量

|||+———->[28:16] L3 索引

||+————————–>[41:29] L2 索引

|+——————————->[47:42] L1 索引(48位)

|[51:42] L1 索引(52位)

+————————————————->[63] TTBR0/1

%小知识:理解 ARM64 内核中对 52 位虚拟地址的支持-1猿站网-插图

arm64 Multi-level Translation

内核对 52 位虚拟地址的支持

因为支持 LVA 的较新的内核应该可以在旧的 CPU(硬件不支持 LVA 拓展)和新的 CPU(硬件支持 LVA 拓展)上都正常运行,因此采用的设计方法是使用单个二进制文件来支持 52 位(如果硬件不支持该特性,则必须在刚开始启动时能回退到 48 位)。也就是说,为了满足 52 位的虚拟地址以及固定大小的 PAGE_OFFSET,VMEMMAP 必须设置得足够大。

这样的设计方式要求内核为了新的虚拟地址空间而支持下面的变量:

VA_BITS 常量*最大的*虚拟地址空间大小

vabits_actual 变量*实际的*虚拟地址空间大小

因此,尽管 VA_BITS 设置了最大的虚拟地址空间大小,但实际上支持的虚拟地址空间大小由 vabits_actual 确定(具体取决于启动时的切换)。

翻转内核内存布局

保持一个单一内核二进制文件的设计方法要求内核的 .text 位于高位地址中,因此它们对于 48/52 位虚拟地址是不变的。因为内核地址检测器(KASAN)区域仅占整个内核虚拟地址空间的一小部分,因此对于 48 位或 52 位的虚拟地址空间,KASAN 区域的末尾也必须在内核虚拟地址空间的上半部分。(从 48 位切换到 52 位,KASAN 区域的末尾是不变的,且依赖于 ~0UL,而起始地址将“增长”到低位地址)

为了优化 phys_to_virt() 和 virt_to_phys(),页偏移量将被保持在 0xFFF0000000000000 (对应于 52 位),这消除了读取额外变量的需求。在早期启动时将会计算 physvirt 和 vmemmap 偏移量以启用这个逻辑。

考虑下面的物理和虚拟 RAM 地址空间的转换:

/*

* 内核线性地址开始于虚拟地址空间的底部

* 测试区域开始处的最高位已经是一个足够的检查,并且避免了担心标签的麻烦

*/

#define virt_to_phys(addr)({ \

if(!(((u64)addr)& BIT(vabits_actual 1))) \

(((addr)&~PAGE_OFFSET)+ PHYS_OFFSET)

})

#define phys_to_virt(addr)((unsignedlong)((addr) PHYS_OFFSET)| PAGE_OFFSET)

在上面的代码中:

PAGE_OFFSET 线性映射的虚拟地址的起始位置位于 TTBR1 地址空间

PHYS_OFFSET 物理地址的起始位置以及 vabits_actual *实际的*虚拟地址空间大小

对用于调试内核的用户态程序的影响

有几个用户空间应用程序可以用于调试正在运行的/活动中的内核或者分析系统崩溃时的 vmcore 转储(例如确定内核奔溃的根本原因):kexec-tools、makedumpfile 和 crash-utility。

当用它们来调试 Arm64 内核时,因为 Arm64 内核内存映射被“翻转”,因此也会对它们产生影响。这些应用程序还需要遍历转换表以确定与虚拟地址相应的物理地址(类似于内核中的完成方式)。

相应地,在将“翻转”引入内核内存映射之后,由于上游破坏了用户态应用程序,因此必须对其进行修改。

我已经提议了对三个受影响的用户态应用程序的修复;有一些已经被上游接受,但其他仍在等待中:

提议 makedumpfile 上游的修复 提议 kexec-tools 上游的修复 已接受的 crash-utility 的修复

除非在用户空间应用程序进行了这些修改,否则它们将仍然无法调试运行/活动中的内核或分析系统崩溃时的 vmcore 转储。

52 位用户态虚拟地址

为了保持与依赖 ARMv8.0 虚拟地址空间的最大为 48 位的用户空间应用程序的兼容性,在默认情况下内核会将虚拟地址从 48 位范围返回给用户空间。

通过指定大于 48 位的 mmap 提示参数,用户态程序可以“选择”从 52 位空间接收虚拟地址。

例如:

.mmap_high_addr.c

—-

   maybe_high_address = mmap(~0UL,size, prot, flags,…);

通过启用以下的内核配置选项,还可以构建一个从 52 位空间返回地址的调试内核:

   CONFIG_EXPERT=y && CONFIG_ARM64_FORCE_52BIT=y

请注意此选项仅用于调试应用程序,不应在实际生产中使用。

结论

总结一下:

内核版本从 5.14 开始,新的 Armv8.2 硬件拓展 LVA 和 LPA 在内核中得到良好支持。 像 kexec-tools 和 makedumpfile 被用来调试内核的用户态应用程序现在无法支持新拓展,仍在等待上游接受修补。 过去的用户态应用程序依赖于 Arm64 内核提供的 48 位虚拟地址将继续原样工作,而较新的用户态应用程序通构指定超过 48 位更大的 mmap 提示参数来 “选择加入”已接受来自 52 位的虚拟地址。

原文地址:https://linux.cn/article-13069-1.html

声明: 猿站网有关资源均来自网络搜集与网友提供,任何涉及商业盈利目的的均不得使用,否则产生的一切后果将由您自己承担! 本平台资源仅供个人学习交流、测试使用 所有内容请在下载后24小时内删除,制止非法恶意传播,不对任何下载或转载者造成的危害负任何法律责任!也请大家支持、购置正版! 。本站一律禁止以任何方式发布或转载任何违法的相关信息访客发现请向站长举报,会员发帖仅代表会员个人观点,并不代表本站赞同其观点和对其真实性负责。本网站的资源部分来源于网络,如有侵权烦请发送邮件至:2697268773@qq.com进行处理。
建站知识

小知识:在Nginx服务器上配置Google反向代理的基本方法

2023-5-3 3:33:12

建站知识

小知识:在Nginx服务器上安装配置博客程序Typecho的教程

2023-5-3 3:42:32

0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索